PROPOSED INFINITE PLAN 8 GRAHAMSTOWN WIND FARM, EASTERN CAPE PROVINCE OF SOUTH AFRICA

ENVIRONMENTAL IMPACT ASSESSMENT

AGRICULTURAL RESOURCES DESKTOP ASSESSMENT

EAP
isi-Xwiba Consulting (C J Bradfield)
Postnet Suite # 30,
Private Bag X 7055
Queenstown
5320
Tel: 083 441 1189
Fax2E-mail: 0866 184 327
Email: isi-xwiba@tbnpartner.co.za

CLIENT
Coastal & Environmental Services
PO Box 934
Grahamstown
6139
Contact : Mr H. Newcombe
Tel: (046) 622 2364
Fax : (046) 622 6564
Email: info@cesnet.co.za

13 December 2011
PROJECT DETAILS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>Infinite8 Grahamstown Wind Park - Agricultural Resources Desktop Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR</td>
<td>Chris Bradfield</td>
</tr>
<tr>
<td>CLIENT</td>
<td>Coastal & environmental Services</td>
</tr>
<tr>
<td>REPORT NUMBER</td>
<td>FINAL</td>
</tr>
</tbody>
</table>

CHRIS BRADFIELD
TABLE OF CONTENTS

1 INTRODUCTION & BACKGROUND ... 4
 1.1 INTRODUCTION .. 4
 1.2 TERMS OF REFERENCE FOR THE EAP ... 4
 1.3 ASSUMPTIONS AND LIMITATIONS ... 4
 1.4 INDEPENDENCE ... 4
2 PROJECT INFORMATION ... 5
 2.1 PROJECT INFORMATION ... 5
 2.2 CATCHMENT AREA .. 5
 2.3 DESCRIPTION OF THE NATURAL RESOURCES .. 6
3 LAND USE AND CAPABILITY ... 9
 3.1 LAND USE ... 9
 3.2 LAND CAPABILITY .. 9
4 IMPACT ASSESSMENT AND MITIGATIONS ... 11
 4.1 IMPACT ON THE AGRICULTURAL RESOURCES ... 11
5 REFERENCES .. 15

TABLE OF FIGURES

Map 1: Locality of Turbines.. 5
Map 2: Geological Map 3326 Grahamstown .. 6
Map 3: Generalised Soil Patterns .. 6
Map 4: Vegetation Biomes .. 7
Map 5: Land Capability .. 9
Map 6: AGIS - Potential Grazing Capacity, 2007 ... 10
Map 7: Agricultural Development Programme for the Eastern Cape Region, 1986 10
1 INTRODUCTION & BACKGROUND

1.1 INTRODUCTION

Coastal & Environmental Services have been commissioned by Infinite 8 to undertake a Scoping and EIR for the construction of wind turbines on three farms within the Makana Municipal area.

isi-Xwiba Consulting cc (C J Bradfield) has been appointed by CES to compile a desktop assessment of the natural agricultural resources on the three farms. This specialist study of the natural agricultural resources will support the Scoping Report (Phase 1) of the EIA process.

It is planned to erect 27 turbines on the farms known as Gilead, Tower Hill and Peynes Kraal. These farms are owned by three individual landowners and total an area of ±2 550 hectare. The turbines will generate a planned 67.5 MW.

1.2 TERMS OF REFERENCE FOR THE EAP

isi-Xwiba Consulting CC (Mr Chris Bradfield) is appointment to compile a desktop assessment of the natural agricultural resources on the study area.

1.3 ASSUMPTIONS AND LIMITATIONS

It is assumed in undertaking this investigation and compiling this report, that the information provided by the applicant and other role-players is accurate. Although isi-Xwiba Consulting CC exercises due care and diligence in rendering services and preparing documents, isi-Xwiba Consulting CC accepts no liability in anyway whatsoever, and the client by receiving this document indemnifies isi-Xwiba Consulting CC and its members, agents and employees against all actions, claims, demands, losses, liabilities, costs, damages and expenses arising from or in connection with services rendered, directly or indirectly by isi-Xwiba Consulting CC and by the use of the information contained in this document.

1.4 INDEPENDENCE

The requirement for independence of the consultant is to reduce the potential for bias in the environmental process. isi-Xwiba Consulting and its employees do not have any current interest in secondary or downstream developments that may arise out of the authorisation of the proposed project. Individual project members do not have any personal or business interests in the development except as part of their functions as employees of isi-Xwiba Consulting. The independent person, Mr Chris Bradfield appointed to compile this audit report is registered as a Professional Natural Scientist with the South African Council for Natural Scientific Professions.
2 PROJECT INFORMATION

2.1 PROJECT INFORMATION

The three farms encompassing the study area and positions of the turbines are depicted in Map 1.

Map 1: Locality of Turbines

2.2 CATCHMENT AREA

The study area falls within Drainage Zones Q93B & Q93D (Surface Water Resources of South Africa 1990).
2.3 DESCRIPTION OF THE NATURAL RESOURCES

2.3.1 Geology

Map 2: Geological Map 3326 Grahamstown

The study, Surface Water Resources of South Africa, 1990 indicates the area as “intercalated arenaceous and argillaceous strata”. The geology encompasses the Beaufort Group and Dwyka and Ecca Groups of the Karoo super Group.

2.3.2 Soils

Map 3: Generalised Soil Patterns

Soils with minimal development, usually shallow on hard or weathering rock with or without intermittent diverse soils. Lime generally present in most or part of the landscape.
Soils with minimal development, usually shallow on hard or weathering rock with or without intermittent diverse soils. Lime rare or absent in the landscape.

The soil forms generally found in the study area classified under the Binomial System are:

<table>
<thead>
<tr>
<th>Soil Form</th>
<th>Erosion Hazard Rating</th>
<th>Soil Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mispah</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Glenrosa</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Hutton</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Clovelly</td>
<td>Moderate - High</td>
<td>High</td>
</tr>
<tr>
<td>Oakleaf</td>
<td>Moderate - High</td>
<td>Moderate - High</td>
</tr>
<tr>
<td>Dundee</td>
<td>High</td>
<td>Moderate - High</td>
</tr>
</tbody>
</table>

The Oakleaf and Dundee soil forms are generally found in the low-lying areas adjacent to the watercourses and are not affected according to Map 1, as no turbines are located within the watercourses. The Hutton and Clovelly soil forms are of medium to high potential and it is assumed that the areas where these are located have already been developed in terms of cultivation. It is unlikely that these would occur on the natural grazing area and if so, would likely be isolated pockets. The Hutton, Clovelly, Oakleaf and Dundee soil forms clearly do not make up a large portion of the area as these soils are not depicted in Map 3: Generalised Soil Patterns. It is therefore likely that the area identified for the construction of the turbines (google image) is mostly on soils of low agricultural potential.

2.3.3 Natural Vegetation

Map 4: Vegetation Biomes

Great Fish Thicket (AT11)
Conservation status is least threatened. Usually found on steep slopes between deep rivers supporting short, medium and tall thicket types. Woody trees, shrubs and succulent component are usually well developed with many spinescent shrubs. Found mostly on shallow (<1m) clay soils (Mispah and Glenrosa Forms).
Kowie Thicket (AT8)
Conservation status is least threatened. Usually found on mainly steep and north-facing gradients, which are usually drier. The tall thickets are dominated by euphorbias and aloes with a thick undergrowth composed of thorny shrubs, woody lianas and shrubby succulents. The moister south facing slopes support thorny thickets dominated by low evergreen trees with fewer succulent shrubs and trees.

Bhisho Thornveld (SVs7)
Conservation status is least threatened. Usually found on undulating to moderately steep slopes. This is open savannah characterised by small trees with a short to medium, dense sour grass usually dominated by Themeda triandra when in good condition.

2.3.4 Water Sources
The Mean Annual Precipitation is 500 to 600 mm and the Mean Annual Evaporation (S-Pan) 1400 to 1600 mm. The Coombs River is in close proximity to the study area. Tower Hill farm drains into the Coombs River. Drainage from Gilead Farm leads into the Bobbejaansrivier and drainage from Peynes Kraal appears to lead into the Gqora stream. A number of earth dams are noted, most likely being for stock water. There are certain to be boreholes providing water to farm homesteads and reservoirs for stockwater purposes.
3 LAND USE AND CAPABILITY

3.1 LAND USE

Map 5: Land Capability

- Wilderness
- Non-arable; moderate potential grazing land

The arable lands noted in the “google image” are not depicted in Map 5: Land Capability. These may be used for dryland cropping and where there is sufficient water, irrigation may be practised. The natural grazing area is farmed with livestock and game.

The arable lands are outside of the immediate “construction” area and therefore not affected by the construction of the turbines. According to Map #1 the turbine sites are restricted to areas currently used as natural grazing. The soils in the area depicted as grazing land are generally of low agricultural potential and not suitable for cultivation.

3.2 LAND CAPABILITY

The potential or capability of the area of cultivated land is not addressed further, as it is evident that the construction of the turbines will not be on these areas.

The potential of the natural grazing are on which the turbines are to be constructed is based on the carrying capacity expressed in hectares per large stock unit (ha/LSU).

The AGIS Comprehensive Atlas (Map 6) indicates the potential carrying capacity as 5 to 6 ha per LSU.
It is the view of the author however that the study an “Agricultural Development Programme for the Eastern Cape Region, 1986” compiled by the Department of Agriculture and Water Supply provides a more accurate assessment as indicated in Map 7 hereunder.
4 IMPACT ASSESSMENT AND MITIGATIONS

4.1 IMPACT ON THE AGRICULTURAL RESOURCES

Impact 1: Possible change of use of agricultural land

Revision of statement

Cause and Comment

The construction of infrastructure for the erection of the turbines will impact on the current land use. The client has advised that the total area impacted upon by construction is 11.79 ha, itemised as follows:

- Roads: 86406.96 m²
- Foundations: 1039.08 m²
- Hard-standings: 30375 m²
- Buildings: 100 m²
- Total (m²): 117921.04 m²
- Total (ha): 11.79 ha

The project may require an authorisation in terms of the “change of use of agricultural land” and possible re-zoning and such a decision would be made by the Department of Agriculture – Eastern Cape.

Mitigation and Management

The report writer has been advised that livestock are known to become used to the use/operation of the turbines and should be able to utilise grazing up to the footprint areas of the turbines. Existing cultivated arable lands are not impacted upon so production can continue on these. The total impacted area of 11.79 ha of the 2,500 ha, calculated as a percentage is 0.004716% of the study area. The 11.79 ha can be considered as natural grazing area. Assuming an average of 6 ha per Large Stock Unit one can assume that the current carrying capacity will be reduced by 2 LSU. This can be considered as insignificant in terms of the overall carrying capacity of the remaining 2,488 ha.

It is recommended that the positioning of the turbines be discussed with staff of the Department of Agriculture to align the project with the Conservation of Agricultural Resources Act.

Significance Statement

<table>
<thead>
<tr>
<th>RATING</th>
<th>Temporal Scale</th>
<th>Spatial Scale</th>
<th>Severity of Impact</th>
<th>Risk or Likelihood</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Mitigation</td>
<td>Permanent 4</td>
<td>Study area 2</td>
<td>Moderate 2</td>
<td>May occur 2</td>
<td>10</td>
</tr>
<tr>
<td>With Mitigation</td>
<td>Short term 1</td>
<td>Study area 2</td>
<td>Slight 1</td>
<td>May occur 2</td>
<td>6</td>
</tr>
</tbody>
</table>

Overall Significance without mitigation: Moderate

Overall Significance with mitigation: Low

Impact 2: Loss of vegetation

Cause and Comment
The erection and maintenance of the turbines will most certainly require the construction of access roads. Farm type access roads probably exist but these will not be suitable for this type of construction and routine maintenance which may have to take place during and after rains. The construction of access roads linking the turbine sites will result in the loss of vegetation.

Mitigation and Management
The conservation status of the three vegetation biomes is least threatened. There may however be listed vegetation species in these vegetation biomes and such plants should be identified and protection measures included in the construction regime. Permits may be required for the removal and transplanting of such species, if this becomes necessary. It is recommended that the positioning of the turbines be discussed with staff of the Department of Agriculture to align the project with the Conservation of Agricultural Resources Act.

Significance Statement

<table>
<thead>
<tr>
<th>RATING</th>
<th>Temporal Scale</th>
<th>Spatial Scale</th>
<th>Severity of Impact</th>
<th>Risk or Likelihood</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Mitigation</td>
<td>Permanent</td>
<td>Study area</td>
<td>Very severe</td>
<td>Definite</td>
<td>18</td>
</tr>
<tr>
<td>With Mitigation</td>
<td>Permanent</td>
<td>Study area</td>
<td>Severe</td>
<td>Definite</td>
<td>14</td>
</tr>
</tbody>
</table>

Overall Significance without mitigation: Very high
Overall Significance with mitigation: High

Impact 3: Pollution of water sources

Cause and Comment
Pollution of the water sources e.g. natural drainage zones (watercourses, streams and rivers), earth dams and boreholes may occur as a result of construction activities. Construction activities will lead to increased run-off and this will result in erosion. The soils are generally shallow with a high erosion index rating.

Mitigation and Management
It is recommended that the positioning of the turbines be discussed with staff of the Department of Agriculture to align the project with the Conservation of Agricultural Resources Act. Construction activities adjacent to watercourses should not be closer than 100 m from the 1-in-100 year flood levels. Turbines should be sited at least 100 m away from earth dams and boreholes. Access roads must be provided with adequate drainage structures to control run-off water. A routine maintenance regime is to be implemented as part of the operational plan for the lifespan of the project.

Significance Statement

<table>
<thead>
<tr>
<th>RATING</th>
<th>Temporal Scale</th>
<th>Spatial Scale</th>
<th>Severity of Impact</th>
<th>Risk or Likelihood</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Mitigation</td>
<td>Permanent</td>
<td>Study area</td>
<td>Severe</td>
<td>Definite</td>
<td>14</td>
</tr>
<tr>
<td>With Mitigation</td>
<td>Medium</td>
<td>Study</td>
<td>Moderate</td>
<td>May</td>
<td>8</td>
</tr>
</tbody>
</table>
Impact 4: Erosion and construction on land with a gradient

Cause and Comment
Degradation of the vegetative cover will increase potential for erosion to occur as the soils generally have a high erosion index rating.

Mitigation and Management
It is recommended that the positioning of the turbines be discussed with staff of the Department of Agriculture to align the project with the Conservation of Agricultural Resources Act. A construction regime to be specified by the design engineer to limit and control loss of vegetation and resultant increased run-off of storm water. A routine maintenance regime is to be implemented as part of the operational plan for the lifespan of the project.

Significance Statement

<table>
<thead>
<tr>
<th>RATING</th>
<th>Temporal Scale</th>
<th>Spatial Scale</th>
<th>Severity of Impact</th>
<th>Risk or Likelihood</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Mitigation</td>
<td>Permanent</td>
<td>4 Study area</td>
<td>Very severe</td>
<td>Definite</td>
<td>4</td>
</tr>
<tr>
<td>With Mitigation</td>
<td>Medium term</td>
<td>2 Study area</td>
<td>moderate</td>
<td>May occur</td>
<td>2</td>
</tr>
<tr>
<td>Overall Significance without mitigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Very high</td>
</tr>
<tr>
<td>Overall Significance with mitigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Impact 5: No-Go

Cause and Comment
The No-Go scenario will result in the current land use remaining the status quo on the ±2 550 ha i.e. cultivation of arable land in the low-lying areas in the Coombs River valley and utilisation of the natural grazing by livestock and game animals. There will therefore be no new impact in terms of current agricultural production and the “farming economy” of the area.

Mitigation and Management
The impact of the operation of the turbines on livestock or game is unknown to the author and it may well be feasible to operate the wind turbine farm and continue with farming operations. Thus, to retain the status quo will provide an income to the land users from farming operations only, whereas should farming practices be able to continue together with the implementation of the wind farm this will allow for a potential increase in income from the resources beneficial to the developer, the local community and the country.

Significance Statement

<table>
<thead>
<tr>
<th>RATING</th>
<th>Temporal Scale</th>
<th>Spatial Scale</th>
<th>Severity of Impact</th>
<th>Risk or Likelihood</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Mitigation</td>
<td>Permanent</td>
<td>4 Study area</td>
<td>Moderately</td>
<td>Don’t</td>
<td></td>
</tr>
<tr>
<td>Mitigation With Mitigation</td>
<td>area</td>
<td>beneficial</td>
<td>know</td>
<td>Overall Significance without mitigation</td>
<td>Overall Significance with mitigation</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Permanent</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td>Study area</td>
<td></td>
<td>Moderately beneficial</td>
<td>Don’t know</td>
<td>?</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 8+ | | | | | |
5 REFERENCES

Surface Water Resources of South Africa, 1990

AGIS Comprehensive Atlas

The Vegetation Map of South Africa, Lesotho and Swaziland, 2006 Ladislav Mucina and Michael C. Rutherford

Agricultural Development Programme for the Eastern Cape Region, 1986 Department of Agriculture and Water Supply

Eastern Cape Biodiversity Conservation Plan

Guidelines for Resource Use, 1988 Department of Agriculture and Water Supply, Eastern Cape Region
ADDENDUM – SOIL SAMPLING

COMMENTS

1. Please read with the map indicating numbered turbine sites provided by CES.
2. This report is based on guidelines set by the Department of Agriculture in conjunction with the Binomial System for soil classification and the basic erosion hazard ratings for South African soil series.
3. A hand auger was used for confirmation of the soil form and effective depth at each turbine site and an Abney level to check the site gradient.
4. The clay percentage of the top soil (A horizon) over the study area is 6 – 15%. The area is therefore susceptible to wind and water erosion if large areas are cleared e.g. cultivation of land. Construction of the turbines should not result in erosion providing that the design engineers make provision for adequate drainage of the access roads and the sites and ensuring that run-off water is controlled and spread over a wide area (concentration of run-off over a narrow area will result in erosion).
5. Apart from wind turbine 6, the remainder are located on soils with low agronomic potential i.e. cannot be cultivated. The status of the natural grazing is generally fair to good.
6. The medium potential soil identified at wind turbine 6 appears to be localised – four sites were controlled in a 50 m radius around this site. This turbine could be moved ±100 m in a Northerly direction.
7. It is suggested that the planners consider moving the positions of 10, 18, 19 and 21 to 23 by 50 – 100 m to allow for construction on a flatter gradient.
8. It is suggested that the planners re-consider the positions of wind turbine 11. Access to this area is difficult over steep terrain and road construction may result in further degradation.
9. The vegetation types found in the study area are listed as least threatened.

### WIND TURBINE No.	SOIL FORM	EFFECTIVE DEPTH (mm)	SITE SLOPE (%)	EROSION HAZARD RATING	CURRENT LANDUSE	STATUS	COMMENTS
1 | Mispah | 100 mm | 7% | High | Veld – AT11 | No erosion | Exposed hard rock on the surface. Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing.
2 | Mispah | 50 mm | <2% | High | Veld – AT11 | No erosion | Hard rock outcrops in vicinity. Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing.
3 | Mispah | 50 mm | <2% | High | Veld - SVs7 | No erosion | Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing.
4 | Mispah | 300 mm | 5% | High | Veld - SVs7 | No erosion | Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing.
5 | Mispah | 120 mm | 12% | High | Veld - SVs7 | Scouring on steep slope | Exposed stone and rock on the surface. Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing. Turbine position could be moved ±50 m to an area with a flatter gradient.
6 | Hutton | 650 mm | 5% | Moderate | Veld - SVs7 | No erosion | Localised area – tower should be moved ±100 m in Northerly direction where Mispah soil form was found (see map). Site is near a borehole and windmill. Although this soil is suitable for cultivation one would not consider this an option as the area is exposed to high wind erosion. Dry land cropping is not viable due to erratic rainfall and there is no irrigation water source.
7 | Mispah | 50 – 100 mm | 6% | High | Veld - SVs7 | No erosion | Hard rock outcrops in vicinity. Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing. Located in close proximity to cell phone tower
8 | Mispah | 50 mm | 8% | High | Veld - SVs7 | No erosion | Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing.
9 | Mispah | 100 mm | 6% | High | Veld - SVs7 | No erosion | Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing.
10 | Mispah | 50 mm | 8% | High | Veld – AT11 | No erosion | Hard rock outcrops in vicinity. Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing. Platform area is narrow (±15 m wide) with steep drop-off.
11 | Glenrosa | 200 mm | 3% | High | Veld – AT11 | No erosion | Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing. Difficult access with probability of erosion occurring from road construction in this terrain
12 | Mispah | <50 mm | <2% | High | Veld – AT11 | No erosion | Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing. Located in close proximity to open cast kaolin mine and water reservoir
13 | Mispah | 70 mm | 5% | High | Veld – AT8 | No erosion | Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing. Located in close proximity to open cast kaolin mine
14 | Mispah | <50 mm | <2% | High | Veld – AT11 | No erosion | Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing. Located in close proximity to open cast kaolin mine and water reservoir
15 | Mispah | <50 mm | <2% | High | Veld – AT11 | No erosion | Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing. Located in close proximity to open cast kaolin mine
16 | Mispah | 50 mm | 5% | High | Veld - SVs7 | No erosion | Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing.
17 | Mispah | 120 mm | 6% | High | Veld - SVs7 | No erosion | Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing.
<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>Rainfall (mm)</th>
<th>Slope (%)</th>
<th>Vegetation</th>
<th>Erosion</th>
<th>Agricultural Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Mispah</td>
<td>300</td>
<td>12%</td>
<td>High</td>
<td>No erosion</td>
<td>Low</td>
</tr>
<tr>
<td>19</td>
<td>Mispah</td>
<td>50</td>
<td>10%</td>
<td>High</td>
<td>No erosion</td>
<td>Low</td>
</tr>
<tr>
<td>20</td>
<td>Mispah</td>
<td>50</td>
<td>8%</td>
<td>High</td>
<td>No erosion</td>
<td>Low</td>
</tr>
<tr>
<td>21</td>
<td>Mispah</td>
<td>75</td>
<td>11%</td>
<td>High</td>
<td>No erosion</td>
<td>Low</td>
</tr>
<tr>
<td>22</td>
<td>Mispah</td>
<td>70</td>
<td>3%</td>
<td>High</td>
<td>No erosion</td>
<td>Low</td>
</tr>
<tr>
<td>23</td>
<td>Mispah</td>
<td>50</td>
<td>13%</td>
<td>High</td>
<td>No erosion</td>
<td>Low</td>
</tr>
<tr>
<td>24</td>
<td>Mispah</td>
<td>50</td>
<td>8%</td>
<td>High</td>
<td>No erosion</td>
<td>Low</td>
</tr>
<tr>
<td>25</td>
<td>Mispah</td>
<td>50</td>
<td>6%</td>
<td>High</td>
<td>No erosion</td>
<td>Low</td>
</tr>
<tr>
<td>26</td>
<td>Mispah</td>
<td>50</td>
<td>5%</td>
<td>High</td>
<td>No erosion</td>
<td>Low</td>
</tr>
<tr>
<td>27</td>
<td>Mispah</td>
<td>50</td>
<td>2%</td>
<td>High</td>
<td>No erosion</td>
<td>Low</td>
</tr>
</tbody>
</table>

Low agricultural potential in terms of cultivation. Only agricultural land use is natural grazing. Construction on this steep gradient may cause erosion. Turbine position could be moved 50 - 100 m to an area with a flatter gradient.